
Reverse Engineering Graph Structures from LLM

Attention Maps

Social Network Analysis Final Project

Logan Bolton

April 2025

Abstract
This study investigates whether properties of graphs formatted as text

prompts can be reverse engineered from the attention maps of Large Lan-
guage Models (LLMs). To investigate this, I train a Multi-Layer Percep-
tron (MLP) to reconstruct the adjacency matrices of undirected graphs
from LLM attention values. This evaluation uses both traditional machine
learning metrics and social network analysis tools to reveal the extent to
which graph properties can be recovered from the inner workings of LLMs.
The results of this study show that the structural information of graphs is
roughly preserved in the LLM’s attention values, providing insights into
the interpretability of LLMs.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in
understanding and generating text. However, their inner workings are not
widely understood. The attention mechanism that enables the training of an
LLM can be roughly explained as the model’s understanding of how every word
in an input relates to every other word in the input sequence. This attention
map can be described as a complete, directed graph with self loops where each
node is a word in an input sequence and each edge is the amount of attention
between words.

This project explores whether it is possible to reverse engineer properties of
a graph network based on the attention map of an LLM. Specifically, I focus on
undirected graphs represented as text inputs and attempt to reconstruct these
graphs from the resulting attention patterns.

2 Methodology

2.1 Overview

My approach consists of three main steps:

1

1. Feed undirected graphs to an LLM in a simple text format

2. Train an MLP on the attention values from the prompts to recreate the
original graphs

3. Compare the generated graphs to the original graphs using machine learn-
ing and social network analysis metrics

2.2 Data Generation

2.2.1 Random Graphs

To create the input graphs, I generate a series of independent random graphs
with the following parameters.

Parameter Value
Number of Graphs 1,000
Maximum Number of Nodes 7
Edge Probability 25%

To transform each graph into a format the LLM can understand, I create a
text prompt that describes each of the edges such as the example in Fig. 1. In
order to reduce position bias in the prompt and to also increase the amount of
training data, I generate multiple variations of the same prompt that describe
one graph. These text prompts cover every possible rotation orientation of the
edges in the prompt. This results in

∑
G EG total prompts where G is the total

number of unique graphs and EG is the number of edges in a graph G.

Original
Connections

A->B

B->C

C->A

Text Prompts Inputted to
the LLM

A->B C->A B->C

B->C A->B C->A

C->A B->C A->B

Figure 1: Each unique graph has (Num of Edges) number of text prompts
describing it.

2.2.2 Extracted Attention Matrices

I then input each of these prompts into the Large Language Model Llama-3.2-1B.
The attention values across all 32 heads of the model from the first layer are
then extracted. I do not include other layers due to computational constraints
and due to empirical observations that the attention values of deeper layers
become increasingly noisy. After extracting all 32 attention maps, I average

2

Figure 2: The amount of attention that each node attends to another node
is averaged across every equivalent graph to generate a simplified aggregated
attention matrix for each of the nodes.

them all into a single matrix of dimensions [# Tokens, # Tokens]. Every at-
tention matrix extracted from equivalent graph text prompts are then averaged
together.

In order to simplify the training process, I convert this token attention matrix
into a matrix of size [# Nodes, # Nodes] (Fig. 2). This new matrix contains
the average value that every node token attends to every other node token in
the graph and disregards other tokens like the newline token, the |BOS| token,
etc.

2.3 Training Procedure

The combined dataset of all graphs was split into train, test and val sets at a
ratio of 70%, 20% and 10% respectively. The MLP was trained to minimize the
binary cross-entropy loss between the constant sized predicted adjacency matrix
and the ground truth adjacency matrix.

2.4 Training Parameters

Parameter Value
Epochs 200
Learning Rate 0.001
Batch Size 128
Hidden Channels 4096
Number of Layers 5

Table 1: Training parameters for the MLP trained on the weighted attention
adjacency matrices from the LLM.

3

2.5 Evaluation Metrics

3 Results

I evaluated my approach using both traditional machine learning metrics and
social network analysis tools.

3.1 Machine Learning Metrics

Provided with the input of node attention values, the model predicts the original
adjacency matrix of the graph. The MLP was able to achieve very high accuracy
in terms of traditional machine learning metrics with an accuracy of 90.64% and
an F1 score of 88.16%.

Parameter Value
Accuracy 0.9064
F1 Score 0.8816

3.2 Network Analysis Metrics

3.2.1 Degree Count

4

3.2.2 Clustering Coefficient

3.2.3 Closeness

5

3.2.4 Number of Weakly Connected Components

4 Discussion

Figure 3: Example of a failure case where the MLP predicts a non-existent edge
(blue) and does not accurately predict existing edges (red).

The loss function to train this model was optimized to generate high accuracy
of predictions for the existence of edges between nodes. For future work, it
could be valuable to explore if a more effective way to reconstruct a graph input
based off LLM attention values would likely be to create a new loss function that
instead optimizes for a quantitative measure of graph structural relationships
instead of a more traditional loss function.

6

5 Conclusion

The MLP’s predicted adjacency matrices had very high accuracy and F1 score.
Additionally, the social network metrics from these predicted graphs roughly
aligned with the ground truth characteristics. While the degree count of the
predicted graphs did follow a different distribution, the metrics for the average
clustering coefficient, closeness, and number of weakly connected components
closely aligned. The results of this study suggest that the attention values of
even a very small 1B parameter LLM can still hold rich information.

7

	Introduction
	Methodology
	Overview
	Data Generation
	Random Graphs
	Extracted Attention Matrices

	Training Procedure
	Training Parameters
	Evaluation Metrics

	Results
	Machine Learning Metrics
	Network Analysis Metrics
	Degree Count
	Clustering Coefficient
	Closeness
	Number of Weakly Connected Components

	Discussion
	Conclusion

